Compare outcomes from differential analysis based on different imputation methods#

  • load scores based on 10_1_ald_diff_analysis

Hide code cell source

import logging
from pathlib import Path

import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from IPython.display import display

import pimmslearn
import pimmslearn.databases.diseases

logger = pimmslearn.logging.setup_nb_logger()

plt.rcParams['figure.figsize'] = (2, 2)
fontsize = 5
pimmslearn.plotting.make_large_descriptors(fontsize)
logging.getLogger('fontTools').setLevel(logging.ERROR)

# catch passed parameters
args = None
args = dict(globals()).keys()

Parameters#

Default and set parameters for the notebook.

folder_experiment = 'runs/appl_ald_data/plasma/proteinGroups'

target = 'kleiner'
model_key = 'VAE'
baseline = 'RSN'
out_folder = 'diff_analysis'
selected_statistics = ['p-unc', '-Log10 pvalue', 'qvalue', 'rejected']

disease_ontology = 5082  # code from https://disease-ontology.org/
# split diseases notebook? Query gene names for proteins in file from uniprot?
annotaitons_gene_col = 'PG.Genes'
# Parameters
disease_ontology = 10652
folder_experiment = "runs/alzheimer_study"
target = "AD"
baseline = "PI"
model_key = "QRILC"
out_folder = "diff_analysis"
annotaitons_gene_col = "None"

Add set parameters to configuration

Hide code cell source

params = pimmslearn.nb.get_params(args, globals=globals())
args = pimmslearn.nb.Config()
args.folder_experiment = Path(params["folder_experiment"])
args = pimmslearn.nb.add_default_paths(args,
                                 out_root=(
                                     args.folder_experiment
                                     / params["out_folder"]
                                     / params["target"]
                                     / f"{params['baseline']}_vs_{params['model_key']}"))
args.update_from_dict(params)
args.scores_folder = scores_folder = (args.folder_experiment
                                      / params["out_folder"]
                                      / params["target"]
                                      / 'scores')
args.freq_features_observed = args.folder_experiment / 'freq_features_observed.csv'
args
root - INFO     Removed from global namespace: folder_experiment
root - INFO     Removed from global namespace: target
root - INFO     Removed from global namespace: model_key
root - INFO     Removed from global namespace: baseline
root - INFO     Removed from global namespace: out_folder
root - INFO     Removed from global namespace: selected_statistics
root - INFO     Removed from global namespace: disease_ontology
root - INFO     Removed from global namespace: annotaitons_gene_col
root - INFO     Already set attribute: folder_experiment has value runs/alzheimer_study
root - INFO     Already set attribute: out_folder has value diff_analysis
{'annotaitons_gene_col': 'None',
 'baseline': 'PI',
 'data': PosixPath('runs/alzheimer_study/data'),
 'disease_ontology': 10652,
 'folder_experiment': PosixPath('runs/alzheimer_study'),
 'freq_features_observed': PosixPath('runs/alzheimer_study/freq_features_observed.csv'),
 'model_key': 'QRILC',
 'out_figures': PosixPath('runs/alzheimer_study/figures'),
 'out_folder': PosixPath('runs/alzheimer_study/diff_analysis/AD/PI_vs_QRILC'),
 'out_metrics': PosixPath('runs/alzheimer_study'),
 'out_models': PosixPath('runs/alzheimer_study'),
 'out_preds': PosixPath('runs/alzheimer_study/preds'),
 'scores_folder': PosixPath('runs/alzheimer_study/diff_analysis/AD/scores'),
 'selected_statistics': ['p-unc', '-Log10 pvalue', 'qvalue', 'rejected'],
 'target': 'AD'}

Excel file for exports#

files_out = dict()
writer_args = dict(float_format='%.3f')

fname = args.out_folder / 'diff_analysis_compare_methods.xlsx'
files_out[fname.name] = fname
writer = pd.ExcelWriter(fname)
logger.info("Writing to excel file: %s", fname)
root - INFO     Writing to excel file: runs/alzheimer_study/diff_analysis/AD/PI_vs_QRILC/diff_analysis_compare_methods.xlsx

Load scores#

Load baseline model scores#

Show all statistics, later use selected statistics

Hide code cell source

fname = args.scores_folder / f'diff_analysis_scores_{args.baseline}.pkl'
scores_baseline = pd.read_pickle(fname)
scores_baseline
model PI
var SS DF F p-unc np2 -Log10 pvalue qvalue rejected
protein groups Source
A0A024QZX5;A0A087X1N8;P35237 AD 0.180 1 0.291 0.590 0.002 0.229 0.728 False
age 0.084 1 0.135 0.713 0.001 0.147 0.817 False
Kiel 2.216 1 3.588 0.060 0.018 1.224 0.140 False
Magdeburg 5.950 1 9.634 0.002 0.048 2.657 0.010 True
Sweden 10.249 1 16.595 0.000 0.080 4.169 0.000 True
... ... ... ... ... ... ... ... ... ...
S4R3U6 AD 0.367 1 0.390 0.533 0.002 0.273 0.680 False
age 1.453 1 1.542 0.216 0.008 0.666 0.365 False
Kiel 0.099 1 0.105 0.746 0.001 0.127 0.840 False
Magdeburg 3.254 1 3.453 0.065 0.018 1.189 0.148 False
Sweden 8.790 1 9.329 0.003 0.047 2.589 0.011 True

7105 rows × 8 columns

Load selected comparison model scores#

Hide code cell source

fname = args.scores_folder / f'diff_analysis_scores_{args.model_key}.pkl'
scores_model = pd.read_pickle(fname)
scores_model
model QRILC
var SS DF F p-unc np2 -Log10 pvalue qvalue rejected
protein groups Source
A0A024QZX5;A0A087X1N8;P35237 AD 0.836 1 4.919 0.028 0.025 1.557 0.071 False
age 0.008 1 0.048 0.826 0.000 0.083 0.891 False
Kiel 0.444 1 2.612 0.108 0.013 0.968 0.209 False
Magdeburg 0.981 1 5.771 0.017 0.029 1.763 0.048 True
Sweden 2.458 1 14.455 0.000 0.070 3.714 0.001 True
... ... ... ... ... ... ... ... ... ...
S4R3U6 AD 0.881 1 0.462 0.498 0.002 0.303 0.637 False
age 0.714 1 0.374 0.541 0.002 0.266 0.672 False
Kiel 7.750 1 4.059 0.045 0.021 1.344 0.105 False
Magdeburg 19.996 1 10.474 0.001 0.052 2.846 0.006 True
Sweden 0.678 1 0.355 0.552 0.002 0.258 0.681 False

7105 rows × 8 columns

Combined scores#

show only selected statistics for comparsion

Hide code cell source

scores = scores_model.join(scores_baseline, how='outer')[[args.baseline, args.model_key]]
scores = scores.loc[:, pd.IndexSlice[scores.columns.levels[0].to_list(),
                                     args.selected_statistics]]
scores
model PI QRILC
var p-unc -Log10 pvalue qvalue rejected p-unc -Log10 pvalue qvalue rejected
protein groups Source
A0A024QZX5;A0A087X1N8;P35237 AD 0.590 0.229 0.728 False 0.028 1.557 0.071 False
Kiel 0.060 1.224 0.140 False 0.108 0.968 0.209 False
Magdeburg 0.002 2.657 0.010 True 0.017 1.763 0.048 True
Sweden 0.000 4.169 0.000 True 0.000 3.714 0.001 True
age 0.713 0.147 0.817 False 0.826 0.083 0.891 False
... ... ... ... ... ... ... ... ... ...
S4R3U6 AD 0.533 0.273 0.680 False 0.498 0.303 0.637 False
Kiel 0.746 0.127 0.840 False 0.045 1.344 0.105 False
Magdeburg 0.065 1.189 0.148 False 0.001 2.846 0.006 True
Sweden 0.003 2.589 0.011 True 0.552 0.258 0.681 False
age 0.216 0.666 0.365 False 0.541 0.266 0.672 False

7105 rows × 8 columns

Models in comparison (name mapping)

Hide code cell source

models = pimmslearn.nb.Config.from_dict(
    pimmslearn.pandas.index_to_dict(scores.columns.get_level_values(0)))
vars(models)
{'PI': 'PI', 'QRILC': 'QRILC'}

Describe scores#

Hide code cell source

scores.describe()
model PI QRILC
var p-unc -Log10 pvalue qvalue p-unc -Log10 pvalue qvalue
count 7,105.000 7,105.000 7,105.000 7,105.000 7,105.000 7,105.000
mean 0.261 2.486 0.338 0.246 2.735 0.313
std 0.304 5.378 0.332 0.299 5.167 0.327
min 0.000 0.000 0.000 0.000 0.000 0.000
25% 0.004 0.327 0.015 0.002 0.358 0.008
50% 0.119 0.925 0.238 0.093 1.031 0.186
75% 0.471 2.440 0.628 0.439 2.698 0.585
max 1.000 143.804 1.000 0.999 83.512 0.999

One to one comparison of by feature:#

Hide code cell source

scores = scores.loc[pd.IndexSlice[:, args.target], :]
scores.to_excel(writer, 'scores', **writer_args)
scores
/tmp/ipykernel_102245/3761369923.py:2: FutureWarning: Starting with pandas version 3.0 all arguments of to_excel except for the argument 'excel_writer' will be keyword-only.
  scores.to_excel(writer, 'scores', **writer_args)
model PI QRILC
var p-unc -Log10 pvalue qvalue rejected p-unc -Log10 pvalue qvalue rejected
protein groups Source
A0A024QZX5;A0A087X1N8;P35237 AD 0.590 0.229 0.728 False 0.028 1.557 0.071 False
A0A024R0T9;K7ER74;P02655 AD 0.059 1.228 0.139 False 0.030 1.517 0.076 False
A0A024R3W6;A0A024R412;O60462;O60462-2;O60462-3;O60462-4;O60462-5;Q7LBX6;X5D2Q8 AD 0.114 0.944 0.230 False 0.190 0.721 0.321 False
A0A024R644;A0A0A0MRU5;A0A1B0GWI2;O75503 AD 0.524 0.281 0.672 False 0.314 0.503 0.466 False
A0A075B6H7 AD 0.109 0.964 0.223 False 0.112 0.952 0.214 False
... ... ... ... ... ... ... ... ... ...
Q9Y6R7 AD 0.175 0.756 0.315 False 0.175 0.756 0.302 False
Q9Y6X5 AD 0.050 1.305 0.121 False 0.076 1.120 0.159 False
Q9Y6Y8;Q9Y6Y8-2 AD 0.083 1.079 0.181 False 0.083 1.079 0.171 False
Q9Y6Y9 AD 0.302 0.520 0.464 False 0.495 0.305 0.635 False
S4R3U6 AD 0.533 0.273 0.680 False 0.498 0.303 0.637 False

1421 rows × 8 columns

And the descriptive statistics of the numeric values:

Hide code cell source

scores.describe()
model PI QRILC
var p-unc -Log10 pvalue qvalue p-unc -Log10 pvalue qvalue
count 1,421.000 1,421.000 1,421.000 1,421.000 1,421.000 1,421.000
mean 0.254 1.405 0.336 0.251 1.486 0.324
std 0.292 1.623 0.319 0.291 1.765 0.317
min 0.000 0.001 0.000 0.000 0.002 0.000
25% 0.011 0.352 0.036 0.009 0.353 0.030
50% 0.125 0.904 0.247 0.109 0.961 0.211
75% 0.444 1.960 0.605 0.443 2.023 0.589
max 0.997 23.616 0.998 0.995 23.394 0.996

and the boolean decision values

Hide code cell source

scores.describe(include=['bool', 'O'])
model PI QRILC
var rejected rejected
count 1421 1421
unique 2 2
top False False
freq 1027 996

Load frequencies of observed features#

Hide code cell source

freq_feat = pd.read_csv(args.freq_features_observed, index_col=0)
freq_feat.columns = pd.MultiIndex.from_tuples([('data', 'frequency'),])
freq_feat
data
frequency
protein groups
A0A024QZX5;A0A087X1N8;P35237 186
A0A024R0T9;K7ER74;P02655 195
A0A024R3W6;A0A024R412;O60462;O60462-2;O60462-3;O60462-4;O60462-5;Q7LBX6;X5D2Q8 174
A0A024R644;A0A0A0MRU5;A0A1B0GWI2;O75503 196
A0A075B6H7 91
... ...
Q9Y6R7 197
Q9Y6X5 173
Q9Y6Y8;Q9Y6Y8-2 197
Q9Y6Y9 119
S4R3U6 126

1421 rows × 1 columns

Compare shared features#

Hide code cell source

scores_common = (scores
                 .dropna()
                 .reset_index(-1, drop=True)
                 ).join(
    freq_feat, how='left'
)
scores_common
PI QRILC data
p-unc -Log10 pvalue qvalue rejected p-unc -Log10 pvalue qvalue rejected frequency
protein groups
A0A024QZX5;A0A087X1N8;P35237 0.590 0.229 0.728 False 0.028 1.557 0.071 False 186
A0A024R0T9;K7ER74;P02655 0.059 1.228 0.139 False 0.030 1.517 0.076 False 195
A0A024R3W6;A0A024R412;O60462;O60462-2;O60462-3;O60462-4;O60462-5;Q7LBX6;X5D2Q8 0.114 0.944 0.230 False 0.190 0.721 0.321 False 174
A0A024R644;A0A0A0MRU5;A0A1B0GWI2;O75503 0.524 0.281 0.672 False 0.314 0.503 0.466 False 196
A0A075B6H7 0.109 0.964 0.223 False 0.112 0.952 0.214 False 91
... ... ... ... ... ... ... ... ... ...
Q9Y6R7 0.175 0.756 0.315 False 0.175 0.756 0.302 False 197
Q9Y6X5 0.050 1.305 0.121 False 0.076 1.120 0.159 False 173
Q9Y6Y8;Q9Y6Y8-2 0.083 1.079 0.181 False 0.083 1.079 0.171 False 197
Q9Y6Y9 0.302 0.520 0.464 False 0.495 0.305 0.635 False 119
S4R3U6 0.533 0.273 0.680 False 0.498 0.303 0.637 False 126

1421 rows × 9 columns

Annotate decisions in Confusion Table style:#

Hide code cell source

def annotate_decision(scores, model, model_column):
    return scores[(model_column, 'rejected')].replace({False: f'{model} (no) ', True: f'{model} (yes)'})


annotations = None
for model, model_column in models.items():
    if annotations is not None:
        annotations += ' - '
        annotations += annotate_decision(scores_common,
                                         model=model, model_column=model_column)
    else:
        annotations = annotate_decision(
            scores_common, model=model, model_column=model_column)
annotations.name = 'Differential Analysis Comparison'
annotations.value_counts()
Differential Analysis Comparison
PI (no)  - QRILC (no)    957
PI (yes) - QRILC (yes)   355
PI (no)  - QRILC (yes)    70
PI (yes) - QRILC (no)     39
Name: count, dtype: int64

List different decisions between models#

Hide code cell source

mask_different = (
    (scores_common.loc[:, pd.IndexSlice[:, 'rejected']].any(axis=1))
    & ~(scores_common.loc[:, pd.IndexSlice[:, 'rejected']].all(axis=1))
)
_to_write = scores_common.loc[mask_different]
_to_write.to_excel(writer, 'differences', **writer_args)
logger.info("Writen to Excel file under sheet 'differences'.")
_to_write
/tmp/ipykernel_102245/1417621106.py:6: FutureWarning: Starting with pandas version 3.0 all arguments of to_excel except for the argument 'excel_writer' will be keyword-only.
  _to_write.to_excel(writer, 'differences', **writer_args)
root - INFO     Writen to Excel file under sheet 'differences'.
PI QRILC data
p-unc -Log10 pvalue qvalue rejected p-unc -Log10 pvalue qvalue rejected frequency
protein groups
A0A087WTT8;A0A0A0MQX5;O94779;O94779-2 0.001 3.056 0.004 True 0.352 0.453 0.504 False 114
A0A087WWT2;Q9NPD7 0.030 1.518 0.082 False 0.005 2.275 0.018 True 193
A0A087X0M8 0.051 1.289 0.124 False 0.003 2.502 0.012 True 189
A0A087X152;D6RE16;E0CX15;O95185;O95185-2 0.009 2.037 0.031 True 0.088 1.055 0.178 False 176
A0A087X1G7;A0A0B4J1S4;O60613 0.061 1.213 0.142 False 0.010 2.005 0.030 True 184
... ... ... ... ... ... ... ... ... ...
Q9P0K9 0.034 1.464 0.091 False 0.012 1.923 0.036 True 192
Q9UKB5 0.010 1.984 0.034 True 0.020 1.706 0.054 False 148
Q9UNW1 0.010 1.999 0.033 True 0.112 0.951 0.215 False 171
Q9UQ52 0.058 1.233 0.138 False 0.004 2.348 0.016 True 188
Q9Y281;Q9Y281-3 0.002 2.821 0.007 True 0.343 0.465 0.495 False 51

109 rows × 9 columns

Plot qvalues of both models with annotated decisions#

Prepare data for plotting (qvalues)

Hide code cell source

var = 'qvalue'
to_plot = [scores_common[v][var] for v in models.values()]
for s, k in zip(to_plot, models.keys()):
    s.name = k.replace('_', ' ')
to_plot.append(scores_common['data'])
to_plot.append(annotations)
to_plot = pd.concat(to_plot, axis=1)
to_plot
PI QRILC frequency Differential Analysis Comparison
protein groups
A0A024QZX5;A0A087X1N8;P35237 0.728 0.071 186 PI (no) - QRILC (no)
A0A024R0T9;K7ER74;P02655 0.139 0.076 195 PI (no) - QRILC (no)
A0A024R3W6;A0A024R412;O60462;O60462-2;O60462-3;O60462-4;O60462-5;Q7LBX6;X5D2Q8 0.230 0.321 174 PI (no) - QRILC (no)
A0A024R644;A0A0A0MRU5;A0A1B0GWI2;O75503 0.672 0.466 196 PI (no) - QRILC (no)
A0A075B6H7 0.223 0.214 91 PI (no) - QRILC (no)
... ... ... ... ...
Q9Y6R7 0.315 0.302 197 PI (no) - QRILC (no)
Q9Y6X5 0.121 0.159 173 PI (no) - QRILC (no)
Q9Y6Y8;Q9Y6Y8-2 0.181 0.171 197 PI (no) - QRILC (no)
Q9Y6Y9 0.464 0.635 119 PI (no) - QRILC (no)
S4R3U6 0.680 0.637 126 PI (no) - QRILC (no)

1421 rows × 4 columns

List of features with the highest difference in qvalues

Hide code cell source

# should it be possible to run not only RSN?
to_plot['diff_qvalue'] = (to_plot[str(args.baseline)] - to_plot[str(args.model_key)]).abs()
to_plot.loc[mask_different].sort_values('diff_qvalue', ascending=False)
PI QRILC frequency Differential Analysis Comparison diff_qvalue
protein groups
E7EN89;E9PP67;E9PQ25;F2Z2Y8;Q9H0E2;Q9H0E2-2 0.940 0.003 86 PI (no) - QRILC (yes) 0.936
Q8TEA8 0.016 0.917 56 PI (yes) - QRILC (no) 0.901
P43004;P43004-2;P43004-3 0.839 0.016 89 PI (no) - QRILC (yes) 0.823
P35754 0.036 0.807 143 PI (yes) - QRILC (no) 0.772
A0A087WTT8;A0A0A0MQX5;O94779;O94779-2 0.004 0.504 114 PI (yes) - QRILC (no) 0.500
... ... ... ... ... ...
P26572 0.056 0.048 194 PI (no) - QRILC (yes) 0.007
D6RCE0;E9PD25;O43897;O43897-2 0.050 0.044 180 PI (no) - QRILC (yes) 0.006
Q16706 0.052 0.046 195 PI (no) - QRILC (yes) 0.006
P00740;P00740-2 0.053 0.048 197 PI (no) - QRILC (yes) 0.004
K7ERG9;P00746 0.052 0.048 197 PI (no) - QRILC (yes) 0.004

109 rows × 5 columns

Differences plotted with created annotations#

Hide code cell source

figsize = (4, 4)
size = 5
fig, ax = plt.subplots(figsize=figsize)
x_col = to_plot.columns[0]
y_col = to_plot.columns[1]
ax = sns.scatterplot(data=to_plot,
                     x=x_col,
                     y=y_col,
                     s=size,
                     hue='Differential Analysis Comparison',
                     ax=ax)
_ = ax.legend(fontsize=fontsize,
              title_fontsize=fontsize,
              markerscale=0.4,
              title='',
              )
ax.set_xlabel(f"qvalue for {x_col}")
ax.set_ylabel(f"qvalue for {y_col}")
ax.hlines(0.05, 0, 1, color='grey', linestyles='dotted')
ax.vlines(0.05, 0, 1, color='grey', linestyles='dotted')
sns.move_legend(ax, "upper right")
files_out[f'diff_analysis_comparision_1_{args.model_key}'] = (
    args.out_folder /
    f'diff_analysis_comparision_1_{args.model_key}')
fname = files_out[f'diff_analysis_comparision_1_{args.model_key}']
pimmslearn.savefig(fig, name=fname)
pimmslearn.plotting - INFO     Saved Figures to runs/alzheimer_study/diff_analysis/AD/PI_vs_QRILC/diff_analysis_comparision_1_QRILC
../../../_images/48c1dc18befd9caaaa12b4364fab25f874868ede49951f752fff6ac215f0adb3.png
  • also showing how many features were measured (“observed”) by size of circle

Hide code cell source

fig, ax = plt.subplots(figsize=figsize)
ax = sns.scatterplot(data=to_plot,
                     x=to_plot.columns[0],
                     y=to_plot.columns[1],
                     size='frequency',
                     s=size,
                     sizes=(5, 20),
                     hue='Differential Analysis Comparison')
_ = ax.legend(fontsize=fontsize,
              title_fontsize=fontsize,
              markerscale=0.6,
              title='',
              )
ax.set_xlabel(f"qvalue for {x_col}")
ax.set_ylabel(f"qvalue for {y_col}")
ax.hlines(0.05, 0, 1, color='grey', linestyles='dotted')
ax.vlines(0.05, 0, 1, color='grey', linestyles='dotted')
sns.move_legend(ax, "upper right")
files_out[f'diff_analysis_comparision_2_{args.model_key}'] = (
    args.out_folder / f'diff_analysis_comparision_2_{args.model_key}')
pimmslearn.savefig(
    fig, name=files_out[f'diff_analysis_comparision_2_{args.model_key}'])
pimmslearn.plotting - INFO     Saved Figures to runs/alzheimer_study/diff_analysis/AD/PI_vs_QRILC/diff_analysis_comparision_2_QRILC
../../../_images/d02c13ee5b0ec06c18c16b7147ed15801d5b3d9cad7088878109825801b88151.png

Only features contained in model#

  • this block exist due to a specific part in the ALD analysis of the paper

Hide code cell source

scores_model_only = scores.reset_index(level=-1, drop=True)
_diff = scores_model_only.index.difference(scores_common.index)
if not _diff.empty:
    scores_model_only = (scores_model_only
                         .loc[
                             _diff,
                             args.model_key]
                         .sort_values(by='qvalue', ascending=True)
                         .join(freq_feat.squeeze().rename(freq_feat.columns.droplevel()[0])
                               )
                         )
    display(scores_model_only)
else:
    scores_model_only = None
    logger.info("No features only in new comparision model.")

if not _diff.empty:
    scores_model_only.to_excel(writer, 'only_model', **writer_args)
    display(scores_model_only.rejected.value_counts())
    scores_model_only_rejected = scores_model_only.loc[scores_model_only.rejected]
    scores_model_only_rejected.to_excel(
        writer, 'only_model_rejected', **writer_args)
root - INFO     No features only in new comparision model.

DISEASES DB lookup#

Query diseases database for gene associations with specified disease ontology id.

Hide code cell source

data = pimmslearn.databases.diseases.get_disease_association(
    doid=args.disease_ontology, limit=10000)
data = pd.DataFrame.from_dict(data, orient='index').rename_axis('ENSP', axis=0)
data = data.rename(columns={'name': args.annotaitons_gene_col}).reset_index(
).set_index(args.annotaitons_gene_col)
data
pimmslearn.databases.diseases - WARNING  There are more associations available
ENSP score
None
APOE ENSP00000252486 5.000
PSEN1 ENSP00000326366 5.000
PSEN2 ENSP00000355747 5.000
APP ENSP00000284981 5.000
TREM2 ENSP00000362205 4.825
... ... ...
CARMIL1 ENSP00000331983 0.681
CENPJ ENSP00000371308 0.681
ERP27 ENSP00000266397 0.681
ZNF585B ENSP00000433773 0.681
KIR3DL2 ENSP00000325525 0.681

10000 rows × 2 columns

Shared features#

ToDo: new script -> DISEASES DB lookup

Hide code cell source

feat_name = scores.index.names[0]  # first index level is feature name
if args.annotaitons_gene_col in scores.index.names:
    logger.info(f"Found gene annotation in scores index:  {scores.index.names}")
else:
    logger.info(f"No gene annotation in scores index:  {scores.index.names}"
                " Exiting.")
    import sys
    sys.exit(0)
root - INFO     No gene annotation in scores index:  ['protein groups', 'Source'] Exiting.
/home/runner/work/pimms/pimms/project/.snakemake/conda/924ec7e362d761ecf0807b9074d79999_/lib/python3.12/site-packages/IPython/core/interactiveshell.py:3707: UserWarning: To exit: use 'exit', 'quit', or Ctrl-D.
  warn("To exit: use 'exit', 'quit', or Ctrl-D.", stacklevel=1)
An exception has occurred, use %tb to see the full traceback.

SystemExit: 0

Hide code cell source

gene_to_PG = (scores.droplevel(
    list(set(scores.index.names) - {feat_name, args.annotaitons_gene_col})
)
    .index
    .to_frame()
    .reset_index(drop=True)
    .set_index(args.annotaitons_gene_col)
)
gene_to_PG.head()

Hide code cell source

disease_associations_all = data.join(
    gene_to_PG).dropna().reset_index().set_index(feat_name).join(annotations)
disease_associations_all

only by model#

Hide code cell source

idx = disease_associations_all.index.intersection(scores_model_only.index)
disease_assocications_new = disease_associations_all.loc[idx].sort_values(
    'score', ascending=False)
disease_assocications_new.head(20)

Hide code cell source

mask = disease_assocications_new.loc[idx, 'score'] >= 2.0
disease_assocications_new.loc[idx].loc[mask]

Only by model which were significant#

Hide code cell source

idx = disease_associations_all.index.intersection(
    scores_model_only_rejected.index)
disease_assocications_new_rejected = disease_associations_all.loc[idx].sort_values(
    'score', ascending=False)
disease_assocications_new_rejected.head(20)

Hide code cell source

mask = disease_assocications_new_rejected.loc[idx, 'score'] >= 2.0
disease_assocications_new_rejected.loc[idx].loc[mask]

Shared which are only significant for by model#

mask = (scores_common[(str(args.model_key), 'rejected')] & mask_different)
mask.sum()

Hide code cell source

idx = disease_associations_all.index.intersection(mask.index[mask])
disease_assocications_shared_rejected_by_model = (disease_associations_all.loc[idx].sort_values(
    'score', ascending=False))
disease_assocications_shared_rejected_by_model.head(20)

Hide code cell source

mask = disease_assocications_shared_rejected_by_model.loc[idx, 'score'] >= 2.0
disease_assocications_shared_rejected_by_model.loc[idx].loc[mask]

Only significant by RSN#

mask = (scores_common[(str(args.baseline), 'rejected')] & mask_different)
mask.sum()

Hide code cell source

idx = disease_associations_all.index.intersection(mask.index[mask])
disease_assocications_shared_rejected_by_RSN = (
    disease_associations_all
    .loc[idx]
    .sort_values('score', ascending=False))
disease_assocications_shared_rejected_by_RSN.head(20)

Hide code cell source

mask = disease_assocications_shared_rejected_by_RSN.loc[idx, 'score'] >= 2.0
disease_assocications_shared_rejected_by_RSN.loc[idx].loc[mask]

Write to excel#

Hide code cell source

disease_associations_all.to_excel(
    writer, sheet_name='disease_assoc_all', **writer_args)
disease_assocications_new.to_excel(
    writer, sheet_name='disease_assoc_new', **writer_args)
disease_assocications_new_rejected.to_excel(
    writer, sheet_name='disease_assoc_new_rejected', **writer_args)

Outputs#

Hide code cell source

writer.close()
files_out