Compare outcomes from differential analysis based on different imputation methods#
load scores based on
10_1_ald_diff_analysis
Parameters#
Default and set parameters for the notebook.
folder_experiment = 'runs/appl_ald_data/plasma/proteinGroups'
target = 'kleiner'
model_key = 'VAE'
baseline = 'RSN'
out_folder = 'diff_analysis'
selected_statistics = ['p-unc', '-Log10 pvalue', 'qvalue', 'rejected']
disease_ontology = 5082 # code from https://disease-ontology.org/
# split diseases notebook? Query gene names for proteins in file from uniprot?
annotaitons_gene_col = 'PG.Genes'
# Parameters
disease_ontology = 10652
folder_experiment = "runs/alzheimer_study"
target = "AD"
baseline = "PI"
model_key = "RF"
out_folder = "diff_analysis"
annotaitons_gene_col = "None"
Add set parameters to configuration
root - INFO Removed from global namespace: folder_experiment
root - INFO Removed from global namespace: target
root - INFO Removed from global namespace: model_key
root - INFO Removed from global namespace: baseline
root - INFO Removed from global namespace: out_folder
root - INFO Removed from global namespace: selected_statistics
root - INFO Removed from global namespace: disease_ontology
root - INFO Removed from global namespace: annotaitons_gene_col
root - INFO Already set attribute: folder_experiment has value runs/alzheimer_study
root - INFO Already set attribute: out_folder has value diff_analysis
{'annotaitons_gene_col': 'None',
'baseline': 'PI',
'data': PosixPath('runs/alzheimer_study/data'),
'disease_ontology': 10652,
'folder_experiment': PosixPath('runs/alzheimer_study'),
'freq_features_observed': PosixPath('runs/alzheimer_study/freq_features_observed.csv'),
'model_key': 'RF',
'out_figures': PosixPath('runs/alzheimer_study/figures'),
'out_folder': PosixPath('runs/alzheimer_study/diff_analysis/AD/PI_vs_RF'),
'out_metrics': PosixPath('runs/alzheimer_study'),
'out_models': PosixPath('runs/alzheimer_study'),
'out_preds': PosixPath('runs/alzheimer_study/preds'),
'scores_folder': PosixPath('runs/alzheimer_study/diff_analysis/AD/scores'),
'selected_statistics': ['p-unc', '-Log10 pvalue', 'qvalue', 'rejected'],
'target': 'AD'}
Excel file for exports#
files_out = dict()
writer_args = dict(float_format='%.3f')
fname = args.out_folder / 'diff_analysis_compare_methods.xlsx'
files_out[fname.name] = fname
writer = pd.ExcelWriter(fname)
logger.info("Writing to excel file: %s", fname)
root - INFO Writing to excel file: runs/alzheimer_study/diff_analysis/AD/PI_vs_RF/diff_analysis_compare_methods.xlsx
Load scores#
Load baseline model scores#
Show all statistics, later use selected statistics
| model | PI | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| var | SS | DF | F | p-unc | np2 | -Log10 pvalue | qvalue | rejected | |
| protein groups | Source | ||||||||
| A0A024QZX5;A0A087X1N8;P35237 | AD | 0.633 | 1 | 0.931 | 0.336 | 0.005 | 0.474 | 0.502 | False |
| age | 0.035 | 1 | 0.052 | 0.820 | 0.000 | 0.086 | 0.894 | False | |
| Kiel | 2.253 | 1 | 3.315 | 0.070 | 0.017 | 1.154 | 0.159 | False | |
| Magdeburg | 5.871 | 1 | 8.639 | 0.004 | 0.043 | 2.432 | 0.015 | True | |
| Sweden | 10.533 | 1 | 15.498 | 0.000 | 0.075 | 3.937 | 0.001 | True | |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| S4R3U6 | AD | 0.795 | 1 | 0.798 | 0.373 | 0.004 | 0.428 | 0.538 | False |
| age | 0.835 | 1 | 0.838 | 0.361 | 0.004 | 0.442 | 0.526 | False | |
| Kiel | 0.537 | 1 | 0.538 | 0.464 | 0.003 | 0.333 | 0.619 | False | |
| Magdeburg | 3.819 | 1 | 3.831 | 0.052 | 0.020 | 1.286 | 0.125 | False | |
| Sweden | 4.139 | 1 | 4.153 | 0.043 | 0.021 | 1.367 | 0.108 | False | |
7105 rows × 8 columns
Load selected comparison model scores#
| model | RF | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| var | SS | DF | F | p-unc | np2 | -Log10 pvalue | qvalue | rejected | |
| protein groups | Source | ||||||||
| A0A024QZX5;A0A087X1N8;P35237 | AD | 0.989 | 1 | 7.408 | 0.007 | 0.037 | 2.149 | 0.021 | True |
| age | 0.003 | 1 | 0.024 | 0.878 | 0.000 | 0.057 | 0.923 | False | |
| Kiel | 0.210 | 1 | 1.575 | 0.211 | 0.008 | 0.676 | 0.337 | False | |
| Magdeburg | 0.389 | 1 | 2.911 | 0.090 | 0.015 | 1.048 | 0.172 | False | |
| Sweden | 1.494 | 1 | 11.191 | 0.001 | 0.055 | 3.004 | 0.004 | True | |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| S4R3U6 | AD | 1.173 | 1 | 2.552 | 0.112 | 0.013 | 0.952 | 0.205 | False |
| age | 0.686 | 1 | 1.492 | 0.223 | 0.008 | 0.651 | 0.352 | False | |
| Kiel | 2.153 | 1 | 4.683 | 0.032 | 0.024 | 1.499 | 0.073 | False | |
| Magdeburg | 1.711 | 1 | 3.723 | 0.055 | 0.019 | 1.258 | 0.116 | False | |
| Sweden | 14.171 | 1 | 30.831 | 0.000 | 0.139 | 7.030 | 0.000 | True | |
7105 rows × 8 columns
Combined scores#
show only selected statistics for comparsion
| model | PI | RF | |||||||
|---|---|---|---|---|---|---|---|---|---|
| var | p-unc | -Log10 pvalue | qvalue | rejected | p-unc | -Log10 pvalue | qvalue | rejected | |
| protein groups | Source | ||||||||
| A0A024QZX5;A0A087X1N8;P35237 | AD | 0.336 | 0.474 | 0.502 | False | 0.007 | 2.149 | 0.021 | True |
| Kiel | 0.070 | 1.154 | 0.159 | False | 0.211 | 0.676 | 0.337 | False | |
| Magdeburg | 0.004 | 2.432 | 0.015 | True | 0.090 | 1.048 | 0.172 | False | |
| Sweden | 0.000 | 3.937 | 0.001 | True | 0.001 | 3.004 | 0.004 | True | |
| age | 0.820 | 0.086 | 0.894 | False | 0.878 | 0.057 | 0.923 | False | |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| S4R3U6 | AD | 0.373 | 0.428 | 0.538 | False | 0.112 | 0.952 | 0.205 | False |
| Kiel | 0.464 | 0.333 | 0.619 | False | 0.032 | 1.499 | 0.073 | False | |
| Magdeburg | 0.052 | 1.286 | 0.125 | False | 0.055 | 1.258 | 0.116 | False | |
| Sweden | 0.043 | 1.367 | 0.108 | False | 0.000 | 7.030 | 0.000 | True | |
| age | 0.361 | 0.442 | 0.526 | False | 0.223 | 0.651 | 0.352 | False | |
7105 rows × 8 columns
Models in comparison (name mapping)
{'PI': 'PI', 'RF': 'RF'}
Describe scores#
| model | PI | RF | ||||
|---|---|---|---|---|---|---|
| var | p-unc | -Log10 pvalue | qvalue | p-unc | -Log10 pvalue | qvalue |
| count | 7,105.000 | 7,105.000 | 7,105.000 | 7,105.000 | 7,105.000 | 7,105.000 |
| mean | 0.262 | 2.481 | 0.339 | 0.234 | 3.078 | 0.293 |
| std | 0.304 | 5.331 | 0.332 | 0.296 | 5.795 | 0.323 |
| min | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 25% | 0.004 | 0.332 | 0.015 | 0.001 | 0.385 | 0.003 |
| 50% | 0.119 | 0.923 | 0.239 | 0.072 | 1.142 | 0.144 |
| 75% | 0.465 | 2.416 | 0.620 | 0.412 | 3.064 | 0.550 |
| max | 1.000 | 149.342 | 1.000 | 1.000 | 84.976 | 1.000 |
One to one comparison of by feature:#
/tmp/ipykernel_80292/3761369923.py:2: FutureWarning: Starting with pandas version 3.0 all arguments of to_excel except for the argument 'excel_writer' will be keyword-only.
scores.to_excel(writer, 'scores', **writer_args)
| model | PI | RF | |||||||
|---|---|---|---|---|---|---|---|---|---|
| var | p-unc | -Log10 pvalue | qvalue | rejected | p-unc | -Log10 pvalue | qvalue | rejected | |
| protein groups | Source | ||||||||
| A0A024QZX5;A0A087X1N8;P35237 | AD | 0.336 | 0.474 | 0.502 | False | 0.007 | 2.149 | 0.021 | True |
| A0A024R0T9;K7ER74;P02655 | AD | 0.043 | 1.364 | 0.109 | False | 0.029 | 1.535 | 0.069 | False |
| A0A024R3W6;A0A024R412;O60462;O60462-2;O60462-3;O60462-4;O60462-5;Q7LBX6;X5D2Q8 | AD | 0.072 | 1.144 | 0.161 | False | 0.363 | 0.440 | 0.502 | False |
| A0A024R644;A0A0A0MRU5;A0A1B0GWI2;O75503 | AD | 0.586 | 0.232 | 0.724 | False | 0.259 | 0.587 | 0.394 | False |
| A0A075B6H7 | AD | 0.111 | 0.955 | 0.227 | False | 0.002 | 2.610 | 0.009 | True |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| Q9Y6R7 | AD | 0.175 | 0.756 | 0.318 | False | 0.175 | 0.756 | 0.292 | False |
| Q9Y6X5 | AD | 0.032 | 1.495 | 0.086 | False | 0.173 | 0.762 | 0.289 | False |
| Q9Y6Y8;Q9Y6Y8-2 | AD | 0.083 | 1.079 | 0.182 | False | 0.083 | 1.079 | 0.162 | False |
| Q9Y6Y9 | AD | 0.409 | 0.388 | 0.572 | False | 0.412 | 0.385 | 0.550 | False |
| S4R3U6 | AD | 0.373 | 0.428 | 0.538 | False | 0.112 | 0.952 | 0.205 | False |
1421 rows × 8 columns
And the descriptive statistics of the numeric values:
| model | PI | RF | ||||
|---|---|---|---|---|---|---|
| var | p-unc | -Log10 pvalue | qvalue | p-unc | -Log10 pvalue | qvalue |
| count | 1,421.000 | 1,421.000 | 1,421.000 | 1,421.000 | 1,421.000 | 1,421.000 |
| mean | 0.255 | 1.414 | 0.336 | 0.245 | 1.518 | 0.311 |
| std | 0.296 | 1.648 | 0.321 | 0.290 | 1.755 | 0.314 |
| min | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 |
| 25% | 0.011 | 0.365 | 0.038 | 0.009 | 0.369 | 0.027 |
| 50% | 0.116 | 0.934 | 0.234 | 0.104 | 0.985 | 0.193 |
| 75% | 0.432 | 1.941 | 0.592 | 0.427 | 2.032 | 0.564 |
| max | 0.998 | 23.733 | 0.999 | 1.000 | 17.488 | 1.000 |
and the boolean decision values
| model | PI | RF |
|---|---|---|
| var | rejected | rejected |
| count | 1421 | 1421 |
| unique | 2 | 2 |
| top | False | False |
| freq | 1025 | 965 |
Load frequencies of observed features#
| data | |
|---|---|
| frequency | |
| protein groups | |
| A0A024QZX5;A0A087X1N8;P35237 | 186 |
| A0A024R0T9;K7ER74;P02655 | 195 |
| A0A024R3W6;A0A024R412;O60462;O60462-2;O60462-3;O60462-4;O60462-5;Q7LBX6;X5D2Q8 | 174 |
| A0A024R644;A0A0A0MRU5;A0A1B0GWI2;O75503 | 196 |
| A0A075B6H7 | 91 |
| ... | ... |
| Q9Y6R7 | 197 |
| Q9Y6X5 | 173 |
| Q9Y6Y8;Q9Y6Y8-2 | 197 |
| Q9Y6Y9 | 119 |
| S4R3U6 | 126 |
1421 rows × 1 columns
Plot qvalues of both models with annotated decisions#
Prepare data for plotting (qvalues)
| PI | RF | frequency | Differential Analysis Comparison | |
|---|---|---|---|---|
| protein groups | ||||
| A0A024QZX5;A0A087X1N8;P35237 | 0.502 | 0.021 | 186 | PI (no) - RF (yes) |
| A0A024R0T9;K7ER74;P02655 | 0.109 | 0.069 | 195 | PI (no) - RF (no) |
| A0A024R3W6;A0A024R412;O60462;O60462-2;O60462-3;O60462-4;O60462-5;Q7LBX6;X5D2Q8 | 0.161 | 0.502 | 174 | PI (no) - RF (no) |
| A0A024R644;A0A0A0MRU5;A0A1B0GWI2;O75503 | 0.724 | 0.394 | 196 | PI (no) - RF (no) |
| A0A075B6H7 | 0.227 | 0.009 | 91 | PI (no) - RF (yes) |
| ... | ... | ... | ... | ... |
| Q9Y6R7 | 0.318 | 0.292 | 197 | PI (no) - RF (no) |
| Q9Y6X5 | 0.086 | 0.289 | 173 | PI (no) - RF (no) |
| Q9Y6Y8;Q9Y6Y8-2 | 0.182 | 0.162 | 197 | PI (no) - RF (no) |
| Q9Y6Y9 | 0.572 | 0.550 | 119 | PI (no) - RF (no) |
| S4R3U6 | 0.538 | 0.205 | 126 | PI (no) - RF (no) |
1421 rows × 4 columns
List of features with the highest difference in qvalues
| PI | RF | frequency | Differential Analysis Comparison | diff_qvalue | |
|---|---|---|---|---|---|
| protein groups | |||||
| Q8N9I0 | 0.989 | 0.007 | 141 | PI (no) - RF (yes) | 0.982 |
| Q96PQ0 | 0.005 | 0.986 | 177 | PI (yes) - RF (no) | 0.981 |
| O00187;O00187-2 | 0.999 | 0.033 | 119 | PI (no) - RF (yes) | 0.965 |
| O75083 | 0.016 | 0.973 | 102 | PI (yes) - RF (no) | 0.957 |
| F6VDH7;P50502;Q3KNR6 | 0.010 | 0.966 | 175 | PI (yes) - RF (no) | 0.956 |
| ... | ... | ... | ... | ... | ... |
| A0A0J9YXX1 | 0.058 | 0.049 | 197 | PI (no) - RF (yes) | 0.009 |
| F5GY80;F5H7G1;P07358 | 0.057 | 0.048 | 197 | PI (no) - RF (yes) | 0.009 |
| Q9NX62 | 0.055 | 0.047 | 197 | PI (no) - RF (yes) | 0.008 |
| P00740;P00740-2 | 0.053 | 0.045 | 197 | PI (no) - RF (yes) | 0.008 |
| K7ERG9;P00746 | 0.052 | 0.044 | 197 | PI (no) - RF (yes) | 0.008 |
198 rows × 5 columns
Differences plotted with created annotations#
pimmslearn.plotting - INFO Saved Figures to runs/alzheimer_study/diff_analysis/AD/PI_vs_RF/diff_analysis_comparision_1_RF
also showing how many features were measured (“observed”) by size of circle
pimmslearn.plotting - INFO Saved Figures to runs/alzheimer_study/diff_analysis/AD/PI_vs_RF/diff_analysis_comparision_2_RF
Only features contained in model#
this block exist due to a specific part in the ALD analysis of the paper
root - INFO No features only in new comparision model.
DISEASES DB lookup#
Query diseases database for gene associations with specified disease ontology id.
pimmslearn.databases.diseases - WARNING There are more associations available
| ENSP | score | |
|---|---|---|
| None | ||
| APOE | ENSP00000252486 | 5.000 |
| PSEN2 | ENSP00000355747 | 5.000 |
| PSEN1 | ENSP00000326366 | 5.000 |
| APP | ENSP00000284981 | 5.000 |
| TREM2 | ENSP00000362205 | 4.825 |
| ... | ... | ... |
| ERP27 | ENSP00000266397 | 0.681 |
| ZNF585B | ENSP00000433773 | 0.681 |
| KIR3DL2 | ENSP00000325525 | 0.681 |
| C12orf66 | ENSP00000311486 | 0.681 |
| ELP2 | ENSP00000414851 | 0.681 |
10000 rows × 2 columns
only by model#
Only by model which were significant#
Only significant by RSN#
mask = (scores_common[(str(args.baseline), 'rejected')] & mask_different)
mask.sum()